package router import ( "strings" "unicode" "unicode/utf8" ) func min(a, b int) int { if a <= b { return a } return b } func countParams(path string) uint8 { var n uint for i := 0; i < len(path); i++ { if path[i] != ':' && path[i] != '*' { continue } n++ } if n >= 255 { return 255 } return uint8(n) } type nodeType uint8 const ( static nodeType = iota // default root param catchAll ) type node struct { path string wildChild bool nType nodeType maxParams uint8 indices string children []*node handle Handle priority uint32 } // increments priority of the given child and reorders if necessary func (n *node) incrementChildPrio(pos int) int { n.children[pos].priority++ prio := n.children[pos].priority // adjust position (move to front) newPos := pos for newPos > 0 && n.children[newPos-1].priority < prio { // swap node positions n.children[newPos-1], n.children[newPos] = n.children[newPos], n.children[newPos-1] newPos-- } // build new index char string if newPos != pos { n.indices = n.indices[:newPos] + // unchanged prefix, might be empty n.indices[pos:pos+1] + // the index char we move n.indices[newPos:pos] + n.indices[pos+1:] // rest without char at 'pos' } return newPos } // addRoute adds a node with the given handle to the path. // Not concurrency-safe! func (n *node) addRoute(path string, handle Handle) { fullPath := path n.priority++ numParams := countParams(path) // non-empty tree if len(n.path) > 0 || len(n.children) > 0 { walk: for { // Update maxParams of the current node if numParams > n.maxParams { n.maxParams = numParams } // Find the longest common prefix. // This also implies that the common prefix contains no ':' or '*' // since the existing key can't contain those chars. i := 0 max := min(len(path), len(n.path)) for i < max && path[i] == n.path[i] { i++ } // Split edge if i < len(n.path) { child := node{ path: n.path[i:], wildChild: n.wildChild, nType: static, indices: n.indices, children: n.children, handle: n.handle, priority: n.priority - 1, } // Update maxParams (max of all children) for i := range child.children { if child.children[i].maxParams > child.maxParams { child.maxParams = child.children[i].maxParams } } n.children = []*node{&child} // []byte for proper unicode char conversion, see #65 n.indices = string([]byte{n.path[i]}) n.path = path[:i] n.handle = nil n.wildChild = false } // Make new node a child of this node if i < len(path) { path = path[i:] if n.wildChild { n = n.children[0] n.priority++ // Update maxParams of the child node if numParams > n.maxParams { n.maxParams = numParams } numParams-- // Check if the wildcard matches if len(path) >= len(n.path) && n.path == path[:len(n.path)] && // Check for longer wildcard, e.g. :name and :names (len(n.path) >= len(path) || path[len(n.path)] == '/') { continue walk } else { // Wildcard conflict var pathSeg string if n.nType == catchAll { pathSeg = path } else { pathSeg = strings.SplitN(path, "/", 2)[0] } prefix := fullPath[:strings.Index(fullPath, pathSeg)] + n.path panic("'" + pathSeg + "' in new path '" + fullPath + "' conflicts with existing wildcard '" + n.path + "' in existing prefix '" + prefix + "'") } } c := path[0] // slash after param if n.nType == param && c == '/' && len(n.children) == 1 { n = n.children[0] n.priority++ continue walk } // Check if a child with the next path byte exists for i := 0; i < len(n.indices); i++ { if c == n.indices[i] { i = n.incrementChildPrio(i) n = n.children[i] continue walk } } // Otherwise insert it if c != ':' && c != '*' { // []byte for proper unicode char conversion, see #65 n.indices += string([]byte{c}) child := &node{ maxParams: numParams, } n.children = append(n.children, child) n.incrementChildPrio(len(n.indices) - 1) n = child } n.insertChild(numParams, path, fullPath, handle) return } else if i == len(path) { // Make node a (in-path) leaf if n.handle != nil { panic("a handle is already registered for path '" + fullPath + "'") } n.handle = handle } return } } else { // Empty tree n.insertChild(numParams, path, fullPath, handle) n.nType = root } } func (n *node) insertChild(numParams uint8, path, fullPath string, handle Handle) { var offset int // already handled bytes of the path // find prefix until first wildcard (beginning with ':'' or '*'') for i, max := 0, len(path); numParams > 0; i++ { c := path[i] if c != ':' && c != '*' { continue } // find wildcard end (either '/' or path end) end := i + 1 for end < max && path[end] != '/' { switch path[end] { // the wildcard name must not contain ':' and '*' case ':', '*': panic("only one wildcard per path segment is allowed, has: '" + path[i:] + "' in path '" + fullPath + "'") default: end++ } } // check if this Node existing children which would be // unreachable if we insert the wildcard here if len(n.children) > 0 { panic("wildcard route '" + path[i:end] + "' conflicts with existing children in path '" + fullPath + "'") } // check if the wildcard has a name if end-i < 2 { panic("wildcards must be named with a non-empty name in path '" + fullPath + "'") } if c == ':' { // param // split path at the beginning of the wildcard if i > 0 { n.path = path[offset:i] offset = i } child := &node{ nType: param, maxParams: numParams, } n.children = []*node{child} n.wildChild = true n = child n.priority++ numParams-- // if the path doesn't end with the wildcard, then there // will be another non-wildcard subpath starting with '/' if end < max { n.path = path[offset:end] offset = end child := &node{ maxParams: numParams, priority: 1, } n.children = []*node{child} n = child } } else { // catchAll if end != max || numParams > 1 { panic("catch-all routes are only allowed at the end of the path in path '" + fullPath + "'") } if len(n.path) > 0 && n.path[len(n.path)-1] == '/' { panic("catch-all conflicts with existing handle for the path segment root in path '" + fullPath + "'") } // currently fixed width 1 for '/' i-- if path[i] != '/' { panic("no / before catch-all in path '" + fullPath + "'") } n.path = path[offset:i] // first node: catchAll node with empty path child := &node{ wildChild: true, nType: catchAll, maxParams: 1, } n.children = []*node{child} n.indices = string(path[i]) n = child n.priority++ // second node: node holding the variable child = &node{ path: path[i:], nType: catchAll, maxParams: 1, handle: handle, priority: 1, } n.children = []*node{child} return } } // insert remaining path part and handle to the leaf n.path = path[offset:] n.handle = handle } // Returns the handle registered with the given path (key). The values of // wildcards are saved to a map. // If no handle can be found, a TSR (trailing slash redirect) recommendation is // made if a handle exists with an extra (without the) trailing slash for the // given path. func (n *node) getValue(path string) (handle Handle, p Params, tsr bool) { walk: // outer loop for walking the tree for { if len(path) > len(n.path) { if path[:len(n.path)] == n.path { path = path[len(n.path):] // If this node does not have a wildcard (param or catchAll) // child, we can just look up the next child node and continue // to walk down the tree if !n.wildChild { c := path[0] for i := 0; i < len(n.indices); i++ { if c == n.indices[i] { n = n.children[i] continue walk } } // Nothing found. // We can recommend to redirect to the same URL without a // trailing slash if a leaf exists for that path. tsr = (path == "/" && n.handle != nil) return } // handle wildcard child n = n.children[0] switch n.nType { case param: // find param end (either '/' or path end) end := 0 for end < len(path) && path[end] != '/' { end++ } // save param value if p == nil { // lazy allocation p = make(Params, 0, n.maxParams) } i := len(p) p = p[:i+1] // expand slice within preallocated capacity p[i].Key = n.path[1:] p[i].Value = path[:end] // we need to go deeper! if end < len(path) { if len(n.children) > 0 { path = path[end:] n = n.children[0] continue walk } // ... but we can't tsr = (len(path) == end+1) return } if handle = n.handle; handle != nil { return } else if len(n.children) == 1 { // No handle found. Check if a handle for this path + a // trailing slash exists for TSR recommendation n = n.children[0] tsr = (n.path == "/" && n.handle != nil) } return case catchAll: // save param value if p == nil { // lazy allocation p = make(Params, 0, n.maxParams) } i := len(p) p = p[:i+1] // expand slice within preallocated capacity p[i].Key = n.path[2:] p[i].Value = path handle = n.handle return default: panic("invalid node type") } } } else if path == n.path { // We should have reached the node containing the handle. // Check if this node has a handle registered. if handle = n.handle; handle != nil { return } if path == "/" && n.wildChild && n.nType != root { tsr = true return } // No handle found. Check if a handle for this path + a // trailing slash exists for trailing slash recommendation for i := 0; i < len(n.indices); i++ { if n.indices[i] == '/' { n = n.children[i] tsr = (len(n.path) == 1 && n.handle != nil) || (n.nType == catchAll && n.children[0].handle != nil) return } } return } // Nothing found. We can recommend to redirect to the same URL with an // extra trailing slash if a leaf exists for that path tsr = (path == "/") || (len(n.path) == len(path)+1 && n.path[len(path)] == '/' && path == n.path[:len(n.path)-1] && n.handle != nil) return } } // Makes a case-insensitive lookup of the given path and tries to find a handler. // It can optionally also fix trailing slashes. // It returns the case-corrected path and a bool indicating whether the lookup // was successful. func (n *node) findCaseInsensitivePath(path string, fixTrailingSlash bool) (ciPath []byte, found bool) { return n.findCaseInsensitivePathRec( path, strings.ToLower(path), make([]byte, 0, len(path)+1), // preallocate enough memory for new path [4]byte{}, // empty rune buffer fixTrailingSlash, ) } // shift bytes in array by n bytes left func shiftNRuneBytes(rb [4]byte, n int) [4]byte { switch n { case 0: return rb case 1: return [4]byte{rb[1], rb[2], rb[3], 0} case 2: return [4]byte{rb[2], rb[3]} case 3: return [4]byte{rb[3]} default: return [4]byte{} } } // recursive case-insensitive lookup function used by n.findCaseInsensitivePath func (n *node) findCaseInsensitivePathRec(path, loPath string, ciPath []byte, rb [4]byte, fixTrailingSlash bool) ([]byte, bool) { loNPath := strings.ToLower(n.path) walk: // outer loop for walking the tree for len(loPath) >= len(loNPath) && (len(loNPath) == 0 || loPath[1:len(loNPath)] == loNPath[1:]) { // add common path to result ciPath = append(ciPath, n.path...) if path = path[len(n.path):]; len(path) > 0 { loOld := loPath loPath = loPath[len(loNPath):] // If this node does not have a wildcard (param or catchAll) child, // we can just look up the next child node and continue to walk down // the tree if !n.wildChild { // skip rune bytes already processed rb = shiftNRuneBytes(rb, len(loNPath)) if rb[0] != 0 { // old rune not finished for i := 0; i < len(n.indices); i++ { if n.indices[i] == rb[0] { // continue with child node n = n.children[i] loNPath = strings.ToLower(n.path) continue walk } } } else { // process a new rune var rv rune // find rune start // runes are up to 4 byte long, // -4 would definitely be another rune var off int for max := min(len(loNPath), 3); off < max; off++ { if i := len(loNPath) - off; utf8.RuneStart(loOld[i]) { // read rune from cached lowercase path rv, _ = utf8.DecodeRuneInString(loOld[i:]) break } } // calculate lowercase bytes of current rune utf8.EncodeRune(rb[:], rv) // skipp already processed bytes rb = shiftNRuneBytes(rb, off) for i := 0; i < len(n.indices); i++ { // lowercase matches if n.indices[i] == rb[0] { // must use a recursive approach since both the // uppercase byte and the lowercase byte might exist // as an index if out, found := n.children[i].findCaseInsensitivePathRec( path, loPath, ciPath, rb, fixTrailingSlash, ); found { return out, true } break } } // same for uppercase rune, if it differs if up := unicode.ToUpper(rv); up != rv { utf8.EncodeRune(rb[:], up) rb = shiftNRuneBytes(rb, off) for i := 0; i < len(n.indices); i++ { // uppercase matches if n.indices[i] == rb[0] { // continue with child node n = n.children[i] loNPath = strings.ToLower(n.path) continue walk } } } } // Nothing found. We can recommend to redirect to the same URL // without a trailing slash if a leaf exists for that path return ciPath, (fixTrailingSlash && path == "/" && n.handle != nil) } n = n.children[0] switch n.nType { case param: // find param end (either '/' or path end) k := 0 for k < len(path) && path[k] != '/' { k++ } // add param value to case insensitive path ciPath = append(ciPath, path[:k]...) // we need to go deeper! if k < len(path) { if len(n.children) > 0 { // continue with child node n = n.children[0] loNPath = strings.ToLower(n.path) loPath = loPath[k:] path = path[k:] continue } // ... but we can't if fixTrailingSlash && len(path) == k+1 { return ciPath, true } return ciPath, false } if n.handle != nil { return ciPath, true } else if fixTrailingSlash && len(n.children) == 1 { // No handle found. Check if a handle for this path + a // trailing slash exists n = n.children[0] if n.path == "/" && n.handle != nil { return append(ciPath, '/'), true } } return ciPath, false case catchAll: return append(ciPath, path...), true default: panic("invalid node type") } } else { // We should have reached the node containing the handle. // Check if this node has a handle registered. if n.handle != nil { return ciPath, true } // No handle found. // Try to fix the path by adding a trailing slash if fixTrailingSlash { for i := 0; i < len(n.indices); i++ { if n.indices[i] == '/' { n = n.children[i] if (len(n.path) == 1 && n.handle != nil) || (n.nType == catchAll && n.children[0].handle != nil) { return append(ciPath, '/'), true } return ciPath, false } } } return ciPath, false } } // Nothing found. // Try to fix the path by adding / removing a trailing slash if fixTrailingSlash { if path == "/" { return ciPath, true } if len(loPath)+1 == len(loNPath) && loNPath[len(loPath)] == '/' && loPath[1:] == loNPath[1:len(loPath)] && n.handle != nil { return append(ciPath, n.path...), true } } return ciPath, false }